| 000 | 03018cam a2200481 i 4500 | ||
|---|---|---|---|
| 001 | 1096213676 | ||
| 003 | OCoLC | ||
| 005 | 20250829162702.0 | ||
| 008 | 190307t20202020flua b 001 0 eng | ||
| 010 | _a2019008196 | ||
| 015 |
_aGBB9B5674 _2bnb |
||
| 020 | _a9781138393295 | ||
| 020 | _a9781138393295 | ||
| 020 | _a9781138393295 | ||
| 020 | _a036726093X | ||
| 020 | _z9781138393295 | ||
| 020 | _z9780429687129 | ||
| 020 | _z9780429687105 | ||
| 020 | _z9780429401862 | ||
| 024 | 8 | _a16051385 | |
| 040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dNDD _dYDX _dUKMGB _dOCLCQ _dBNG _dS9M _dMUU _dSOI _dYUS _dZAQ _dAJB _dTOH _dTOL _dUtOrBLW |
||
| 042 | _apcc | ||
| 050 | 0 | 0 |
_aQA273 _b.M38495 2020 |
| 082 | _a 519.5 MAT 2020 | ||
| 100 | 1 |
_aMatloff, Norman S., _eauthor |
|
| 245 | 1 | 0 |
_aProbability and statistics for data science : _bmath + R + data / _cNorman Matloff |
| 264 | 1 |
_aBoca Raton : _bCRC Press, Taylor & Francis Group, _c[2020] |
|
| 264 | 4 | _c©2020 | |
| 300 |
_axxxii, 412 pages : _billustrations ; _c24 cm |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_aunmediated _bn _2rdamedia |
||
| 338 |
_avolume _bnc _2rdacarrier |
||
| 490 | 1 | _aChapman & Hall/CRC data science series | |
| 504 | _aContains bibliographical references (pages 391-394) and index | ||
| 505 | 0 | 0 |
_tBasic probability models -- _tMonte Carlo simulation -- _tDiscrete random variables: expected value -- _tDiscrete random variables: variance -- _tDiscrete parametric distribution families -- _tContinuous probability models -- _tStatistics: prologue -- _tFitting continuous models -- _tThe family of normal distributions -- _tIntroduction to statistical inference -- _tMultivariate distributions -- _tThe multivariate normal family of distributions -- _tMixture distributions -- _tMultivariate description and dimension reduction -- _tPredictive modeling -- _tModel parsimony and overfitting -- _tIntroduction to discrete time Markov chains -- _tAppendices: A. R Quick Start -- _tB. Matrix algebra |
| 520 | _a"Probability and Statistics for Data Science: Math + R + Data covers "math stat"--distributions, expected value, estimation etc.--but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming." --Amazon.com | ||
| 650 | 0 |
_aProbabilities _vTextbooks |
|
| 650 | 0 |
_aMathematical statistics _vTextbooks |
|
| 650 | 0 |
_aProbabilities _xData processing |
|
| 650 | 0 |
_aMathematical statistics _xData processing |
|
| 830 | 0 | _aSeries in computer science and data analysis | |
| 942 |
_2ddc _cBK _n0 |
||
| 999 |
_c595 _d595 |
||