000 03018cam a2200481 i 4500
001 1096213676
003 OCoLC
005 20250829162702.0
008 190307t20202020flua b 001 0 eng
010 _a2019008196
015 _aGBB9B5674
_2bnb
020 _a9781138393295
020 _a9781138393295
020 _a9781138393295
020 _a036726093X
020 _z9781138393295
020 _z9780429687129
020 _z9780429687105
020 _z9780429401862
024 8 _a16051385
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dNDD
_dYDX
_dUKMGB
_dOCLCQ
_dBNG
_dS9M
_dMUU
_dSOI
_dYUS
_dZAQ
_dAJB
_dTOH
_dTOL
_dUtOrBLW
042 _apcc
050 0 0 _aQA273
_b.M38495 2020
082 _a 519.5 MAT 2020
100 1 _aMatloff, Norman S.,
_eauthor
245 1 0 _aProbability and statistics for data science :
_bmath + R + data /
_cNorman Matloff
264 1 _aBoca Raton :
_bCRC Press, Taylor & Francis Group,
_c[2020]
264 4 _c©2020
300 _axxxii, 412 pages :
_billustrations ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 1 _aChapman & Hall/CRC data science series
504 _aContains bibliographical references (pages 391-394) and index
505 0 0 _tBasic probability models --
_tMonte Carlo simulation --
_tDiscrete random variables: expected value --
_tDiscrete random variables: variance --
_tDiscrete parametric distribution families --
_tContinuous probability models --
_tStatistics: prologue --
_tFitting continuous models --
_tThe family of normal distributions --
_tIntroduction to statistical inference --
_tMultivariate distributions --
_tThe multivariate normal family of distributions --
_tMixture distributions --
_tMultivariate description and dimension reduction --
_tPredictive modeling --
_tModel parsimony and overfitting --
_tIntroduction to discrete time Markov chains --
_tAppendices: A. R Quick Start --
_tB. Matrix algebra
520 _a"Probability and Statistics for Data Science: Math + R + Data covers "math stat"--distributions, expected value, estimation etc.--but takes the phrase "Data Science" in the title quite seriously: * Real datasets are used extensively. * All data analysis is supported by R coding. * Includes many Data Science applications, such as PCA, mixture distributions, random graph models, Hidden Markov models, linear and logistic regression, and neural networks. * Leads the student to think critically about the "how" and "why" of statistics, and to "see the big picture." * Not "theorem/proof"-oriented, but concepts and models are stated in a mathematically precise manner. Prerequisites are calculus, some matrix algebra, and some experience in programming." --Amazon.com
650 0 _aProbabilities
_vTextbooks
650 0 _aMathematical statistics
_vTextbooks
650 0 _aProbabilities
_xData processing
650 0 _aMathematical statistics
_xData processing
830 0 _aSeries in computer science and data analysis
942 _2ddc
_cBK
_n0
999 _c595
_d595