000 05153cam a2200745 i 4500
001 300478243
003 OCoLC
005 20240902170716.0
008 090130s2009 nyuad b 001 0 eng
010 _a2008941148
015 _a08,N30,0597
_2dnb
020 _a9780387848570
020 _a0387848576
020 _z9780387848587
_q(electronic)
020 _z0387848584
_q(electronic)
020 _a9780387848846
020 _a0387848843
024 3 _a9780387848570
035 _a(OCoLC)300478243
_z(OCoLC)717787914
_z(OCoLC)754964653
_z(OCoLC)889892141
_z(OCoLC)1121619059
_z(OCoLC)1166882354
_z(OCoLC)1170976193
040 _aNUI
_beng
_erda
_cNUI
_dYDXCP
_dCTB
_dCDX
_dBWX
_dIXA
_dOHX
_dOCLCQ
_dOCL
_dUBA
_dSNK
_dAUW
_dDLC
_dHEBIS
_dDEBBG
_dOCL
_dDEBSZ
_dCHRRO
_dGZM
_dMYG
_dALAUL
_dUKMGB
_dOCLCQ
_dOHS
_dFDA
_dOCLCF
_dOCLCQ
_dOCLCO
_dKLH
_dOCLCQ
_dUSU
_dEYM
_dTSC
_dOCLCQ
_dTFW
_dOCLCO
_dNJR
_dDHA
_dOCLCA
_dOCLCQ
_dGILDS
_dOCLCO
_dGZH
_dZLM
_dIPL
_dOCLCO
_dJVH
_dOCLCO
_dMNI
_dOCLCO
_dMST
_dOCLCO
_dGZN
_dOCLCO
_dCAI
_dOCLCO
_dSNN
_dOCLCQ
_dOCLCO
_dIPS
_dUKUOY
_dOCLCA
_dYOU
_dOCLCQ
_dHUELT
_dOCLCO
_dAZU
_dNZHMA
_dOCLCA
_dOCLCQ
_dOCLCO
_dOCLCA
_dAZDAC
_dOCLCA
_dTXHLS
_dOCLCO
_dIL4J6
_dOCLCO
_dANO
_dOCLCO
_dVI#
_dOCL
_dFJD
_dOCLCO
_dOCLCL
050 4 _aQ325.75
_b.H37 2009
060 4 _aQ325.75
_b.H37 2009
072 7 _as1se
_2rero
082 0 4 _a006.3122 HAS 2009
_223/eng/20221220
100 1 _aHastie, Trevor.
_eauthor
245 1 4 _aThe elements of statistical learning :
_bdata mining, inference, and prediction /
_cTrevor Hastie, Robert Tibshirani, Jerome Friedman
250 _aSecond edition
264 1 _aNew York :
_bSpringer,
_c[2009]
264 4 _c©2009
300 _axxii, 745 pages :
_billustrations (some color), charts ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
340 _gmonochrome
_2rdacc
340 _gpolychrome
_2rdacc
340 _2rdaill
340 _2rdaill
490 1 _aSpringer series in statistics,
_x0172-7397
504 _aIncludes bibliographical references (pages 699-727) and indexes
505 0 0 _g1.
_tIntroduction --
_g2.
_tOverview of supervised learning --
_g3.
_tLinear methods for regression --
_g4.
_tLinear methods for classification --
_g5.
_tBasis expansions and regularization --
_g6.
_tKernel smoothing methods --
_g7.
_tModel assessment and selection --
_g8.
_tModel inference and averaging --
_g9.
_tAdditive models, trees, and related methods --
_g10.
_tBoosting and additive trees --
_g11.
_tNeural networks --
_g12.
_tSupport vector machines and flexible discriminants --
_g13.
_tPrototype methods and nearest-neighbors --
_g14.
_tUnsupervised learning --
_g15.
_tRandom forests --
_g16.
_tEnsemble learning --
_g17.
_tUndirected graphical models --
_g18.
_tHigh-dimensional problems: p>> N
520 1 _a"During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates."--Publisher's description
650 0 _aSupervised learning (Machine learning)
650 0 _aElectronic data processing
650 0 _aStatistics
650 0 _aBiology
_xData processing
650 0 _aComputational biology
650 0 _aMathematics
_xData processing
650 0 _aData mining
650 0 _aArtificial intelligence
650 0 _aLearning
650 1 2 _aArtificial Intelligence
650 2 2 _aAlgorithms
650 2 2 _aComputing Methodologies
650 2 2 _aLearning
650 2 2 _aStatistics as Topic
650 2 _aComputational Biology
650 2 _aData Mining
655 2 _aStatistics
655 7 _aStatistik.
_2gnd
655 7 _aStatistics.
_2lcgft
700 1 _aTibshirani, Robert,
_eauthor
700 1 _aFriedman, J. H.
_q(Jerome H.),
_eauthor.
_1https://id.oclc.org/worldcat/entity/E39PBJtxcwfDT9wrQ8yjBhhPwC
830 0 _aSpringer series in statistics
942 _2ddc
_cBK
_n0
999 _c415
_d415