000 | 04185cam a2200589 i 4500 | ||
---|---|---|---|
001 | 20987519 | ||
003 | OSt | ||
005 | 20240819170336.0 | ||
008 | 190528s2020 flua b 001 0 eng c | ||
010 | _a 2019941841 | ||
016 | 7 |
_a101763352 _2DNLM |
|
020 |
_a9780367342906 _q(hardback ; _qalk. paper) |
||
020 | _a9781032088686 | ||
020 |
_a0367342901 _q(hardback ; _qalk. paper) |
||
035 | _a(OCoLC)on1102647135 | ||
040 |
_aNLM _beng _cNLM _erda _dYDXIT _dOCLCF _dNUI _dYDX _dOCLCO _dOCLCQ _dOCLCA _dUPM _dOCLCO _dDLC |
||
042 | _apcc | ||
043 | _an-us--- | ||
050 | 0 | 0 |
_aRA410.6 _b.Y36 2020 |
060 | 0 | 0 | _aW 86 |
082 | _a610.285 YAN 2020 | ||
100 | 1 |
_aYang, Chengliang _c(Of University of Florida), _eauthor. |
|
245 | 1 | 0 |
_aData-driven approaches for health care : _bmachine learning for identifying high utilizers / _cChengliang Yang, Chris Delcher, Elizabeth Shenkman, Sanjay Ranka. |
264 | 1 |
_aBoca Raton : _bCRC Press, _c[2020] |
|
300 |
_aix, 107 pages : _billustrations ; _c26 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
490 | 1 | _aChapman & Hall/CRC big data series | |
500 | _a"A Chapman & Hall book." | ||
500 | _aIntroduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utilizers. Residuals Analysis for Identifying High Utilizers. Machine Learning Results for High Utilizers. | ||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aIntroduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utlizers. Residuals Analysis for Identifying High Utilizers. Machine Learning Results for High Utilizers. | |
520 |
_aHealth care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem. Key Features: Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers Presents descriptive data driven methods for the high utilizer population Identifies a best-fitting linear and tree-based regression model to account for patients' acute and chronic condition loads and demographic characteristics.-- _cSource other than the Library of Congress. |
||
650 | 0 |
_aMedical care _xUtilization _xMathematical models. |
|
650 | 0 | _aMachine learning. | |
650 | 1 | 2 |
_aMedical Overuse _xprevention & control |
650 | 2 | 2 |
_aMedical Overuse _xstatistics & numerical data |
650 | 2 | 2 | _aModels, Theoretical |
650 | 2 | 2 | _aMachine Learning |
650 | 7 |
_aMachine learning. _2fast _0(OCoLC)fst01004795 |
|
650 | 7 |
_aMedical care _xUtilization _xMathematical models. _2fast _0(OCoLC)fst01013885 |
|
651 | 2 | _aUnited States | |
700 | 1 |
_aDelcher, Chris, _eauthor. |
|
700 | 1 |
_aShenkman, Elizabeth, _eauthor. |
|
700 | 1 |
_aRanka, Sanjay, _eauthor. |
|
776 | 0 | 8 |
_iElectronic version: _aYang, Chengliang. _tData driven approaches for healthcare. _dBoca Raton : CRC Press, Taylor & Francis Group, 2020 _z9780429342769 _w(OCoLC)1121596821 |
830 | 0 | _aChapman & Hall/CRC big data series. | |
906 |
_a7 _bcbc _cpccadap _d2 _encip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK _n0 |
||
999 |
_c209 _d209 |