The elements of statistical learning : data mining, inference, and prediction /
Hastie, Trevor.
The elements of statistical learning : data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman - Second edition - xxii, 745 pages : illustrations (some color), charts ; 24 cm - - Springer series in statistics, 0172-7397 . - Springer series in statistics .
Includes bibliographical references (pages 699-727) and indexes
Introduction -- Overview of supervised learning -- Linear methods for regression -- Linear methods for classification -- Basis expansions and regularization -- Kernel smoothing methods -- Model assessment and selection -- Model inference and averaging -- Additive models, trees, and related methods -- Boosting and additive trees -- Neural networks -- Support vector machines and flexible discriminants -- Prototype methods and nearest-neighbors -- Unsupervised learning -- Random forests -- Ensemble learning -- Undirected graphical models -- High-dimensional problems: p>> N 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
"During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates."--Publisher's description
9780387848570 0387848576 9780387848846 0387848843
9780387848570
2008941148
08,N30,0597 dnb
Supervised learning (Machine learning)
Electronic data processing
Statistics
Biology--Data processing
Computational biology
Mathematics--Data processing
Data mining
Artificial intelligence
Learning
Artificial Intelligence
Algorithms
Computing Methodologies
Learning
Statistics as Topic
Computational Biology
Data Mining
Statistics
Statistik.
Statistics.
Q325.75 / .H37 2009
006.3122 HAS 2009
Q325.75 / .H37 2009
The elements of statistical learning : data mining, inference, and prediction / Trevor Hastie, Robert Tibshirani, Jerome Friedman - Second edition - xxii, 745 pages : illustrations (some color), charts ; 24 cm - - Springer series in statistics, 0172-7397 . - Springer series in statistics .
Includes bibliographical references (pages 699-727) and indexes
Introduction -- Overview of supervised learning -- Linear methods for regression -- Linear methods for classification -- Basis expansions and regularization -- Kernel smoothing methods -- Model assessment and selection -- Model inference and averaging -- Additive models, trees, and related methods -- Boosting and additive trees -- Neural networks -- Support vector machines and flexible discriminants -- Prototype methods and nearest-neighbors -- Unsupervised learning -- Random forests -- Ensemble learning -- Undirected graphical models -- High-dimensional problems: p>> N 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
"During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates."--Publisher's description
9780387848570 0387848576 9780387848846 0387848843
9780387848570
2008941148
08,N30,0597 dnb
Supervised learning (Machine learning)
Electronic data processing
Statistics
Biology--Data processing
Computational biology
Mathematics--Data processing
Data mining
Artificial intelligence
Learning
Artificial Intelligence
Algorithms
Computing Methodologies
Learning
Statistics as Topic
Computational Biology
Data Mining
Statistics
Statistik.
Statistics.
Q325.75 / .H37 2009
006.3122 HAS 2009
Q325.75 / .H37 2009